Research > Microbe > Bacteria > Vibrio


Common Generic Names
  • Electrolytically Generated Hypochlorous Acid (HOCl)
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)

Results: 15 published articles


Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli, Vibrio parahaemolyticus


Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.


Journal Cover

Microbe(s): Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus, Campylobacter jejuni


The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hyrol possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.


Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


The aim of this study was to determine the combined effects of slightly acidic electrolyzed water SAEW (pH range 5.06.5, oxidationreduction potential 6501000 mV, available chlorine concentration 1080 mg/L) containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound US (37 kHz, 380 W) using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 67 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.041.86 log reduction) and V. parahaemolyticus (1.021.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y=6.153220.024732X 10.016486X 20.00015X 1 X 20.00024X 1 20.00007X 2 2) and V. parahaemolyticus (Y=5.676490.042598X 10.014013X 20.00003X 1 X 20.00006X 1 20.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


The bactericidal effects of strongly acidic hypochlorous acid water (StAHA) and slightly acidic hypochlorous acid water (SlAHA) against Vibrio parahaemolyticus contaminated on surface of raw fish and shellfish were examined. V. parahaemolyticus contaminated with about 7.0 log CFU/g on the meat chunk of olive flounder (Paralichthys olivaceus), and yellow tail (Seriola quinqueradiata), and 4.0 log CFU/g on the shucked scallop (Patinopecten yessoensis) were not detected after washing with StAHA and SlAHA at a ratio of 30:1 on a sample weight basis. However, 1.0 log CFU/g of V. parahaemolyticus was survived on shucked oyster (Crassostrea gigas) under same treatment conditions. The bactericidal effects of acidic hypochlorous acid water against V. parahaemolyticus contaminated on surface of shucked oyster were not as effective as those against V. parahaemolyticus contaminated on surface of meat chunk of olive flounder, yellow tail, and shucked scallop. Such differences can be attributed to the complicated surface conformation of oyster.


Journal Cover

Microbe(s): Escherichia coli O104: H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, Vibrio parahaemolyticus


This study investigated the effect of electrolyzed water on pathogenic bacteria cell suspensions. Specifically, we evaluated the efficacy of strong and weak acidic electrolyzed waters (SACEW, WACEW) and strong and weak alkaline electrolyzed waters (SALEW, WALEW) on Vibrio parahaemolyticus, Listeria monocytogenes, Aeromonas hyificantly more resistant to ALEW compared to ACEW. Results also show that the bactericidal activity of SACEW (20 mg/mL ACC) was more effective than WACEW (10 mg/mL ACC) in terms of inactivating E. coli O104:H4. Alkaline-electrolyzed waters were found to reduce cell numbers by 13 log (P < 0.05). However, alkaline electrolyzed water was less effective (P < 0.05) than acidic electrolyzed treatment.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4 30 C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, ; the maximum growth rate, max; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 C). The results showed that AEW treatment could markedly (p < 0.05) decrease the growth rate ( max) and extend the lag time ( ) during the post-treatment storage at 30, 25, 20 and 15 C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p < 0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


Vibrio parahaemolyticus is the leading cause of seafood-derived illness in China and a possible mechanism leading to illness is cross contamination of cooked shrimp. The objective of this study was to establish a mathematical model of the inactivation of V. parahaemolyticus on cooked shrimp by acidic electrolyzed water (AEW) as a function of three variables (NaCl concentration to electrolysis, X1; treatment time, X2; treatment temperature, X3) and to define priority factors which can significantly enhance the bactericidal efficiency to reduce the risk of illness caused by V. parahaemolyticus. The combined effects of NaCl concentration (0.7 2.4 g/L), treatment time (3.6 10.4 min) and temperature (23 57 C) on Log reductions of V. parahaemolyticus on cooked shrimp were investigated according to a central composite design, and the Log reductions were modeled using a response surface model. The result showed the established RS model had a goodness of fitting quantified by the parameters of R2 (0.982), lack of fit test (p > 0.05), the root-mean-squares error (RMSE = 0.15), the accuracy factor (Af = 1.10) and bias factor (Bf = 0.99). The model was validated with additional random 8 conditions within the range of the experimental domain. It showed that the established RS model possessed a good performance and suitability approved by RMSE (0.43), Af (1.28) and Bf (1.19). Moreover, the effects of the independent variable and their interactions on response value were ranked as X3 = X32 >> X1X3 > X2 > X1 according to Pareto charts and response surface plots analysis. The present work could serve as useful tools for predicting the inactivation of V. parahaemolyticus on cooked shrimp by AEW.


Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, Escherichia coli


Pathogenic contamination is a food safety concern. This study was conducted to investigate the efficacy of neutral electrolyzed water (NEW) in killing pathogens, namely, Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, and Escherichia coli in shrimp. Pure cultures of each pathogen were submerged separately in NEW containing five different chlorine concentrations: 10, 30, 50, 70, and 100 ppm. For each concentration, three submersion times were tested: 1, 3, and 5 min. The population of V. parahaemolyticus was rapidly reduced even at low concentrations, but prolonged contact times caused only a slight reduction. V. vulnificus was gradually inhibited with increasing NEW concentrations and contact times. For the V. parahaemolyticus applications of 70 ppm for 5 min and of 100 ppm for 3 min, each eliminated 7 log CFU/ml. For V. vulnificus, applications of 50 ppm for 3 min and 100 ppm for 1 min, each eliminated 7 log CFU/ml. Salmonella Enteritidis and E. coli were slightly reduced by NEW. Applications of 50 ppm for 15 min and 10 ppm for 30 min completely eliminated 4.16 log CFU/g of V. parahaemolyticus in inoculated shrimp, while only a 1-log CFU/g reduction of V. vulnificus was detected. Soaking shrimp in 10 ppm NEW for 30 min did not affect its sensory quality. Our results suggest NEW could be an alternative sanitizer to improve the microbiological quality of seafood.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the efficacy of acidic electrolyzed water (AEW) against Vibrio parahaemolyticus on shrimp. The shrimp was initially inoculated with V. parahaemolyticus(7 8 log CFU/g), and treated with AEW (AEW1 containing 51 mg/L of chlorine or AEW2 containing 78 mg/L of chlorine) or organic acids (2% AA and 2%LA) for 1 min or 5 min under different treated conditions. The effect of AEW was better than that of organic acids, the number of survival V. parahaemolyticus cells on shrimp was reduced by 0.9 log CFU/g after treatment for 5 min with AEW without vibration, while 1.0 log CFU/g bacteria cells reduced with vibration. No significant difference (p > 0.05) was observed between AEW and organic acids in the bactericidal activity with or without vibration. The effective order of temperatures on bactericidal activities of AEW was 50 C > 20 C > 4 C, and a 3.1 log CFU/g reduction of V. parahaemolyticus cells on shrimp was detected with treatment of AEW at 50 C. Mild heat greatly enhanced efficacy of electrolyzed water against V. parahaemolyticus. Basic electrolyzed water (BEW) (50 C) pretreatment combined with AEW (50 C) treatment remarkably reduced bacterial cells by 5.4 log CFU/g on shrimp after treatment for 5 min. There was a significant change in physicochemical properties (pH, ORP, ACC) of AEW, after it was used to wash shrimp (P < 0.05). This study suggests that BEW (50 C) pretreatment followed by AEW (50 C) treatment could be a possible method to effectively control V. parahaemolyticus contamination on shrimp.


Journal Cover

Microbe(s): (Listeria monocytogenes, Vibrio parahaemolyticus


The objective of this study was to evaluate physicochemical properties and bactericidal activities of acidic electrolyzed water (AEW) used or stored at different temperatures on shrimp. Three independent experiments were carried out. The first experiment was to evaluate the physicochemical properties and bactericidal activities of AEW used at three different temperatures (4, 20, 50 C) against food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) contamination on cooked shrimp at 1 or 5 min; the second one was to monitor the bactericidal activity of AEW used at two temperatures (20, 50 C) against total aerobic bacteria on raw shrimp at 5 min by conventional plate count method and PCR DGGE method; the last one was to examine the physicochemical properties and bactericidal activities of AEW (AEW1, AEW2) stored at two temperatures ( 18, 25 C) for 30 d against total aerobic bacteria on raw shrimp at 2 min. Results showed that AEW used at 50 C showed the best bactericidal activity, leading to a log reduction of 3.11 for V. parahaemolyticus, 1.96 for L. monocytogenes and 1.44 for total aerobic bacteria at 5 min, respectively. Conventional plate count and PCR DGGE (denaturing gradient gel electrophoresis) study further suggested that the bactericidal activity of AEW used at 50 C was higher than at 20 C. The loss of bactericidal activity of AEW stored at 18 C was less than that of stored at 25 C, and the ORP and ACC decreased more slowly than those of stored at 25 C. However, the ORP and ACC of AEW used at 50 C showed a remarkably faster decrease than that of used at 20 C. We suggest using AEW at 50 C to enhance bactericidal activity and storing at 18 C to keep the content of ACC and the bactericidal activity.


Journal Cover

Microbe(s): Vibrio vulnificus, Vibrio parahaemolyticus


Vibrio parahaemolyticus and Vibriovulnificus cause severe foodborne illness in humans; thus, to reduce outbreaks of disease, it is clearly important to reduce food contamination by these pathogens. Although electrolyzed oxidizing (EO) water has been reported to exhibit strong bactericidal activities against many pathogens, it has never been tested against V. vulnificus and V. parahaemolyticus. The purpose of this study was to evaluate the bactericidal activity of weakly acidic electrolyzed water (WAEW), a type of EO water, against V. vulnificus and V. parahaemolyticus. Cell suspensions and cell cultures of both pathogens were treated for 30 s with sodium hypochlorite solution containing 35 mg/L available chlorine concentration (ACC) or WAEW containing 35 mg/L ACC. After an initial inoculum of 5.7 log CFU/mL, the number of viable V. vulnificus cells was reduced by 2.2 logs after treatment for 60 s with sodium hypochlorite solution containing 35 mg/L ACC, while no cells survived treatment with WAEW for 30 s. Similar results were obtained for V. parahaemolyticus. Under open storage conditions, WAEW maintained bactericidal activities against cell suspensions of both strains after 5 weeks but disappeared against cell cultures of the two strains after 5 weeks. Under closed storage conditions, however, WAEW maintained bactericidal activities against both cell suspensions and cell cultures of each strain after 5 weeks. No cells were detected in the cell suspensions and cultures when the ACC of WAEW was more than 20 mg/L and treatment time was greater than 15 s. Bactericidal activity of WAEW against V. vulnificus cell culture was reduced when the ACC of WAEW was less than 15 mg/L but was maintained in the V. vulnificus cell suspension when the ACC of WAEW was 0.5 mg/L. Thus, the bactericidal activity of WAEW was primarily affected by ACC rather than treatment time. Similar results were obtained for V. parahaemolyticus, indicating that WAEW kills these microorganisms more quickly than a chemical product such as sodium hypochlorite (NaClO), even at equivalent ACCs.


Journal Cover

Microbe(s): Vibrio parahaemolyticus


AIM: To determine the efficacy of electrolysed oxidizing (EO) water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces. METHODS AND RESULTS: Cutting boards (bamboo, wood and plastic) and food contact surfaces (stainless steel and glazed ceramic tile) were inoculated with V. parahaemolyticus. Viable cells of V. parahaemolyticus were detected on all cutting boards and food contact surfaces after 10 and 30 min, respectively, at room temperatures. Soaking inoculated food contact surfaces and cutting boards in distilled water for 1 and 3 min, respectively, resulted in various reductions of V. parahaemolyticus, but failed to remove the organism completely from surfaces. However, the treatment of EO water [pH 2.7, chlorine 40 ppm, oxidation-reduction potential 1151 mV] for 30, 45, and 60 s, completely inactivated V. parahaemolyticus on stainless steel, ceramic tile, and plastic cutting boards, respectively. CONCLUSIONS: EO water could be used as a disinfecting agent for inactivating V. parahaemolyticus on plastic and wood cutting boards and food contact surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: Rinsing the food contact surfaces with EO water or soaking cutting boards in EO water for up to 5 min could be a simple strategy to reduce cross-contamination of V. parahaemolyticus during food preparation.


Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


For reducing bacterial contamination, electrolyzed oxidizing water (EO water) has been used to reduce microbial population on seafood and platform of fish retailer. The specimens of tilapia were inoculated with Escherichia coli and Vibrio parahaemolyticus, and then soaked into EO water for up to 10 min. EO water achieved additional 0.7 log CFU/cm2 reduction than tap water on E. coli after 1 min treatment and additional treatment time did not achieved additional reduction. EO water treatment also reduced V. parahaemolyticus, by 1.5 log CFU/cm2 after 5 min treatment and achieved 2.6 log CFU/cm2 reduction after 10 min. The pathogenic bacteria were not detected in EO water after soaking treatment. In addition, EO water could effectively disinfect the platform of fish retailer in traditional markets and fish markets.


Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus


Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 107 CFU/ml) and V. vulnificus (8.69 107 CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (>6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 104 and 106 most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (>12 h) of oysters in EO water containing high levels of chlorine (>30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to6hto avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.